Sharp permutation groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

Permutation Groups

The theory of permutation groups is essentially the theory of symmetry for mathematical and physical systems. It therefore has major impact in diverse areas of mathematics. Twentieth-century permutation group theory focused on the theory of finite primitive permutation groups, and this theory continues to become deeper and more powerful as applications of the finite simple group classification,...

متن کامل

Galois Groups as Permutation Groups

Writing f(T ) = (T − r1) · · · (T − rn), the splitting field of f(T ) over K is K(r1, . . . , rn). Each σ in the Galois group of f(T ) over K permutes the ri’s since σ fixes K and therefore f(r) = 0⇒ f(σ(r)) = 0. The automorphism σ is completely determined by its permutation of the ri’s since the ri’s generate the splitting field over K. A permutation of the ri’s can be viewed as a permutation ...

متن کامل

Finitary Permutation Groups

A finitary permutation group is a natural generalization of a finite permutation group. The structure of a transitive finitary permutation group is surprisingly simple when its degree is infinite. Here we study primitivity, following P. M. Neumann’s work in the 1970s. We also study generalized solubility conditions on these groups. These notes arose from lectures aimed at an audience who had se...

متن کامل

Oligomorphic permutation groups

A permutation group G (acting on a set Ω, usually infinite) is said to be oligomorphic if G has only finitely many orbits on Ωn (the set of n-tuples of elements of Ω). Such groups have traditionally been linked with model theory and combinatorial enumeration; more recently their group-theoretic properties have been studied, and links with graded algebras, Ramsey theory, topological dynamics, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 1981

ISSN: 0025-5645

DOI: 10.2969/jmsj/03330435